Геометрические характеристики сечений Построение эпюр Общие понятия о деформации изгиба Момент сил. Понятие об устойчивости Изгиб с кручением

Лекции по сопромату, теория, практика, задачи

Учет собственного веса при растяжении и сжатии. Подбор сечений с учетом собственного веса (при растяжении и сжатии). При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.

Лекции по сопромату, теория, практика, задачи.

Геометрические характеристики сечений.

Статический момент сечения.

При дальнейшем изучении вопросов прочности, жесткости и устойчивости нам придется иметь дело с некоторыми геометрическими характеристиками сечения: статическими моментами, моментами инерции, моментами сопротивления.

Статическим моментом Sx сечения (фигуры) относительно какой-либо оси х (рис.1.1) называется геометрическая характеристика, определяемая интегралом вида

f_1.gif          (1.1)

где y - расстояние от элементарной площадки dA до оси x.

1_1.gif

Единицей измерения статического момента является единица длины в третьей степени, обычно см3(см в третьей степени). Статический момент может быть положительным, отрицательным и, в частности, равным нулю. Если отождествить площадь с силой, действующей перпендикулярно плоскости чертежа, то интеграл (4.1) можно рассматривать как сумму моментов сил относительно оси х. По известной из теоретической механике теореме о моменте равнодействующей можно написать

f_2.gif          (1.2)

где А - площадь всей фигуры (равнодействующая); ус - расстояние от центра тяжести фигуры до оси х.

Из формулы (1.2) следует формула определения ординаты центра тяжести

ус = Sx/A.           (1.3)

Аналогично, статический момент относительно оси у равен

f_4.gif          (1.4)

Откуда

xс = Sy/A.           (1.5)

Центр тяжести обладает тем свойством, что если тело опереть в этой точке, то оно будет находиться в равновесии.

Из формулы (1.2) и (1.4) следует, что если оси х и у проходят через центр тяжести фигуры, то статический момент относительно этих осей равен нулю. Такие оси называются центральными осями.

Если фигуру можно представить в виде отдельных простых фигур (квадратов, треугольников и т.д.), для которых известны положения центров тяжести, то в этом случае статический момент всей фигуры можно получить как сумму статических моментов этих простых фигурю Это непостредственно следует из свойств определенного интеграла.

1_2.gif

Если фигура имеент ось симметрии, то последняя всегда проходит через центр тяжести фигуры, а потому статический момент фигуры относительно оси симметрии всегда равен нулю.

Во многих случаях вместо простых интегралов вида (1.1) и (1.4) удобнее иметь дело с двойными интегралами вида:

f_1a.gif          (1.1a)

f_4a.gif          (1.4a)

Здесь D - облать интегрирования.

 

Пример 1.1. Определить положение центра тяжести сечения, показанного на рис. 1.2, а.

Решение. Разбиваем сечение на два прямоугольника. Проводим вспомогательные оси х и у.

По формулам (1.3) и (1.5) получим:

t1_1.gif

По этим координатам находим точку С - центр тяести сечения. Она лежит на линии, соединяющей точки С1 и С2, ближе к фигуре, имеющей большую площадь.

Пример 1.2. Вычислить ординату центра тяжести половины круга (рис. 1.2, б).

Решение. Пользуемся формулой

t1_2.gif

Вычисляем числитель, используя уравнение окружности х2 + y2 = R2:

t1_3.gif

Вычисляем ус

t1_4.gif

1. Геометрические характеристики сечений.

Моменты инерции сечения. Осевым, или экваториальным, моментом инерции сечения называется геометрическая характеристика, численно равная интегралу: относительно оси х  

Моменты инерции простых сечений

Моменты инерции сложных фигур. Момент инерции сложной фигуры равен сумме моментов инерции ее составных частей  

Определение напряжений в стержнях круглого сечения. Крутящие моменты, о которых шла речь выше, представляют лишь равнодействующие внутренние усилия. Фактически в поперечном сечении скручиваемого стержня действуют непрерывно распределенные внутренние касательные напряжения, к определению которых теперь и перейдем.

Метод сил. Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями
Исследование характеристик светового жгута Бензокоса oleo mac sparta 25 ECO ALUMINIUM 6103.
Лекции по сопромату, теория, практика, задачи