Уравнения параболического типа Примеры решения задач Приближенный метод интегрирования систем Пример. Вычислить координаты вектора Аналитическая геометрия Примеры решения типовых задач: уравнение плоскости Контрольная работа

Примеры решения типовых задач по математике

Пример. Вычислить координаты вектора , если известны декартовы координаты:   и .

Решение: По формуле, выражающей векторное произведение через декартовы координаты имеем:  

.

Ответ: координаты вектора .

Пример 1.9. Вычислить , если , .

Решение: Так как у векторов  и  третья координата не задана, то можно выразить векторное произведение через определитель 3-го рода, подставив вместо нее нули: .

Ответ: .

Примеры решения типовых задач: векторная алгебра

Задача 1.1.

Даны два вектора  и . Найти координаты вектора .

Решение: Из свойства 1 следует, что , следовательно: .

Ответ: .

Задача 1.2

Найти координаты вектора , соединяющего точку  с координатами  и точку  с координатами .

Решение: Обозначим координаты точки  как , координаты точки  как . Из свойства 2 следует: вектор  имеет координаты . Подставляем исходные значения: .

Ответ: .

Задача 1.3

Доказать, что два вектора  и  коллинеарны.

Решение: Из свойства 3 следует, что для решения необходимо проверить выполнение равенства: . Подставим заданные значения координат: , откуда: . Равенство верно.

Ответ: исходные вектора коллинеарны.

Задача 1.4

Задан вектор  и известно, что точка  имеет координаты . Найти координаты точки  – начала вектора.

Решение: Введем обозначения:  – координаты вектора ,  – координаты точки ,  – координаты точки .

Из свойства 2 следует, что для решения необходимо решить два уравнения: ; .

Подставим известные величины: ; ; откуда искомые координаты: ; . Ответ: точка  имеет координаты .


Решение дифференциальных уравнений