Разные рамы для постеров. Алюминиевые рамки для постеров.
Электронная промышленность Основы построения логических схем Ключи на полевых транзисторах Назначение, классификация дешифраторов Амплитудно-импульсная модуляция Нелинейное резонансное усиление

Промышленная электроника

ПЕРСПЕКТИВЫ РАЗВИТИЯ РАДИОЭЛЕКТРОНИКИ Тенденции и проблемы развития радиоэлектроники. Совершенствование эле-ментной базы РЭУ и РЭС. Внедрение цифровых методов обработки информа-ции. Защита информации.

Для дальнейшего изучения свойств процесса дискретизации лучше всего обратиться к методам частотного анализа. В связи с этим напомним, что умножение и свертка функций являются двойственными операциями во временной и частотной областях. Поскольку дискретизированная функция сообщения представляет собой произведение сигнала информации и выборочной функции, ее спектральная плотность определяется как свертка спектра сигнала информации с линейчатым спектром (7.2). В соответствии с (7.2) спектральная плотность дискретизированного сообщения V(f) ó v{t) имеет вид

 

где G(f) ó g('f) — спектральная плотность передаваемого сообщения. Если отвлечься от масштабного коэффициента 1/T то спектральная плотность V(f) представляет собой бесконечный спектр, ванный периодическим повторением спектра исходного сообщения, как показано на рис. 3. Заметим, что выборочная часто-


РИСУНОК 3 Спектр дискретизированной функции сообщения.

та f=1//T (или скорость взятия отсчетов) весьма сходна с понятием несущей частоты и что каждая отдельная часть спектра дискретизированного сообщения напоминает спектр БМ сигнала. Далее, спектр на рис. 3 изображен в предположении, что выборочная частота несколько превышает удвоенную максимальную частоту спектра исходного сигнала. При таком соотношении частот соседние части спектра взаимно не перекрываются и исходное колебание может быть восстановлено с помощью фильтра, который пропускает без искажений лишь одну, например, центральную часть спектра дискретизированного сообщения и подавляет все остальные его составляющие. (Если выделяется любая другая часть спектра, то исходное сообщение восстанавливается методом синхронного детектирования.).

 Основным положением принципа временной дискретизации является теорема о наименьшем числе отсчетов функции, определяющих ее полностью и однозначно. При дискретизации сигналов всегда приходится иметь дело с функциями, имеющими ограниченный спектр. Можно, например, показать, что действительная низкочастотная функция, спектр которой ограничен максимальной частотой fm:

 

полностью описывается своими значениями, отсчитанными через интервалы 1/2 fm, сек, на всем промежутке существования функции (т. е. может быть точно восстановлена по этим значениям). Таким образом, выборочная частота (скорость взятия отсчетов) должна удовлетворять неравенству

 

Другими словами, частота fс должна превышать максимальную частоту спектра функции более чём в два раза. Этот вывод очевиден и непосредственно из рис. 3. Как указывалось выше, при такой скорости последовательность отсчетов полностью определяет исходную функцию, в то время как при меньшей скорости соседние ветви в спектре дискретизированного сообщения будут перекрывать друг друга, что приведет к искажению восстановленной функции.

Минимальная скорость отсчетов для функций с ограниченным спектром, равная 2fm, называется скоростью Найквиста. Можно показать, что аналогичные соотношения справедливы и для полосовых функций, у которых средняя частота fc много больше ширины спектра В. Отсчеты (амплитуды и фазы) полосовой функции, взятые со скоростью Найквиста, т. е. 2В отсчетов в секунду, полностью описывают исходную функцию. Таким образом, нет необходимости передавать все значения непрерывной функции времени. Достаточно посылать лишь его мгновенные значения, полученные путем снятия отсчетов с постоянной скоростью 2fm или 2В отсчетов в секунду.

Дадим теперь иное толкование принципа дискретизации: сигнал, не содержащий частот выше fm, Гц, может принимать самое большое 2fm независимых значений в секунду. В этом смысле можно говорить о том, что сигнал полностью определяется количеством 2fm чисел в секунду или что в секунду он передает 2fm независимых элементов информации. Отсюда следует, что фильтр или канал связи с полосой пропускания В, Гц, может быть использован для передачи не более 2fm независимых отсчетов в секунду.

Приведем теперь простое обоснование принципа дискретизации и покажем, что полное восстановление исходного сигнала по его выборочной последовательности может быть осуществлено идеальным фильтром нижних частот с полосой пропускания .

Пусть имеется сигнал информации с ограниченным спектром

 ,

где .

Поскольку спектр сигнала ограничен конечной областью (-fm, +fm) то G(f) можно трактовать, как периодическую функцию частоты с периодом 2 fm, которую можно разложить в ряд Фурье. Естественно, это разложение будет описывать сигнал g(t) только делах основной области

(-fm, +fm). Таким образом,

 

где коэффициенты разложения

 

Из соотношения вытекает, что

 

и, следовательно,

 

 Таким образом, коэффициенты разложения пропорциональны мгновенным значениям исходной функции, отсчитанным со скоростью Найквиста. Соответственно разложение G(f) в ряд Фурье также определяется отсчетными значениями исходной функции:

 

 Из этого следует, что исходная функция может быть представлена в виде

 

Последнее выражение и служит образованием теоремы отсчетов, которая гласит, что действительная функция с ограниченным спектром полностью определяется последовательностью своих дискретных значений g(k/2fm), следующих через интервалы l/2fm, сек. Каждое слагаемое представляет собой смещенную функцию вида (sinx)/x, амплитуда которой в момент соответствующего отсчета равна мгновенному значению исходной функции, а в моменты остальных отсчетов обращается в ноль. Кроме того, соотношение показывает, что в промежуточные моменты времени совокупность всех слагаемых в точности воспроизводит функции g(t). Это иллюстрируется рис. 4.


РИСУНОК 4 Восстановление сигнала по его отсчетным значениям с помощью фильтра нижних частот.

Из приведенного обоснования принципа дискретизации ясно, что дискретизированная функция сообщения вида

 

где отсчеты берутся со скоростью, несколько большей чем 2fm в секунду, вмещает в себя весь объем информации, содержащейся в исходной функции. Из рис. 3, на котором изображен спектр сигнала v(t), очевидно, что g(t) может быть восстановлена по последовательности своих дискретных значений с помощью фильтра нижних частот. Справедливость этого легко доказывается и другим путем. С этой целью рассмотрим идеальный фильтр нижних частот с чистотой среза 1/2Т≥fm:

 

Математически прохождение дискретизированной функции сообщения v(t) через фильтр нижних частот H(f) соответствует свертке v(t) с импульсной переходной функцией фильтра h(t). Следовательно,

 

где

 

 Подставляя сюда находим, что сигнал, получающийся в результате низкочастотной фильтрации дискретизированной функции сообщения, имеет вид

 

 Если сравнить этот результат и учесть, что T≤1/2fm ,то становится ясно, что

.

 Таким образом, при скорости отсчетов, превышающей скорость Найквиста, исходная функция может быть точно (с точностью до постоянного множителя) восстановлена по последовательности своиx дискретных значений с помощью идеального фильтра нижних частот.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 1. Расчет спектров периодических и непериодических сигналов. 2. Расчет параметров и частотных характеристик избирательных цепей. 3. Расчет фильтров. 4. Нелинейные цепи и режимы преобразования сигналов. 5. Расчет усилительных каскадов. 6. Расчет генераторов гармонических колебаний. 7. Импульсные устройства. 8. Устройства на основе цифровых микросхем. 9. Расчет основных характеристик приемных устройств. 10. Расчет вторичных источников питания.
Промышленная электроника