Электронная промышленность Основы построения логических схем Ключи на полевых транзисторах Назначение, классификация дешифраторов Амплитудно-импульсная модуляция Нелинейное резонансное усиление

Промышленная электроника

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ 1.2.1. Конструктивные разновидности транзисторов. Влияние конструктивно-технологического исполнения транзисторов на их параметры. Проектирование транзисторных структур с оптимальными параметрами. 1.2.2. Методика проектирования транзисторов. Выбор структур, исходных полупроводниковых материалов, расчет геометрических размеров, расчет электрических параметров. Методика оценки технологических параметров.

Назначение, классификация дешифраторов

 Дешифратор – это комбинационное устройство, предназначенное для преобразования параллельного двоичного кода в унитарный, т.е. позиционный код. Обычно, указанный в схеме номер вывода дешифратора соответствует десятичному эквиваленту двоичного кода, подаваемого на вход дешифратора в качестве входных переменных, вернее сказать, что при подаче на вход устройства параллельного двоичного кода на выходе дешифратора появится сигнал на том выходе, номер которого соответствует десятичному эквиваленту двоичного кода. Отсюда следует, что в любой момент времени выходной сигнал будет иметь место только на одном выходе дешифратора. В зависимости от типа дешифратора, этот сигнал может иметь как уровень логической единицы (при этом на всех остальных выходах уровень логического 0), так и уровень логического 0 (при этом на всех остальных выходах уровень логической 1).

 В дешифраторах каждой выходной функции соответствует только один минтерм, а количество функций определяется количеством разрядов двоичного числа. Если дешифратор реализует все минтермы входных переменных, то он называется полным дешифратором (в качестве примера неполного дешифратора можно привести дешифратор двоично-десятичных чисел).

Рассмотрим пример синтеза дешифратора (полного), количество разрядов двоичного числа - 3, количество выходов - 8. Аппараты для коммутации цепей управления Лабораторные работы по электротехнике

Таблица состояний дешифратора:

Х3 Х2 Х1 

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0 

 1 0 1 

 1 1 0 

 1 1 1

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0  0 0 1 0

0 0 0 0 0 0 0 1

Как следует из таблицы состояния, каждой функции соответствует только один минтерм, следовательно, не требуется минимизировать эти функции (рис. 3.6.1).

Из полученных уравнений и схемы дешифратора следует, что для реализации полного дешифратора на m входов (переменных) потребуются n = 2m элементов конъюнкции (количество входов каждого элемента “И” равно m) и m элементов отрицания.

Пирамидальные дешифраторы. Пирамидальные дешифраторы позволяют реализовать схему на базе только двухвходовых элементов логического умножения (конъюнкции). Рассмотрим пример реализации дешифратора 3-8:

 Рис. 3.6.1

Для построения такого дешифратора потребуется 12 двухвходовых элементов 2И и три инвертора. Пирамидальные дешифраторы при больших количествах входных переменных позволяют несколько упростить конструкцию устройства, т.е. уменьшить количество интегральных микросхем.

Промышленностью стран СНГ, в том числе и России, выпускаются различные модификации дешифраторов в интегральном исполнении. Обозначение дешифраторов на принципиальных схемах показано на рис. 3.6.2:

 Рис. 3.6.2

 Мультиплексор - коммутатор цифровых сигналов. Мультиплексор представляет собой комбинационное устройство с m информационными, n управляющими входами и одним выходом. Функционально  мультиплексор состоит из m элементов конъюнкции, выходы которых объединены дизъюнктивно с помощью элемента ИЛИ с m входами. На одни входы всех элементов конъюнкции подаются информационные сигналы, а другие входы этих элементов соединены с соответствующими выходами дешифратора с n входами.

Полный сумматор. Многоразрядный сумматор Полный одноразрядный двоичный сумматор имеет три входа: a, b — для двух слагаемых и p — для переноса из предыдущего (более младшего) разряда и два выхода: S — сумма, P — перенос в следующий (более старший) разряд.

Импульсная модерация Как уже указывалось, в процессе модуляции любого вида принимают участие модулирующий сигнал и некоторая функция, играющая роль несущей. В двух предыдущих главах описан случай, когда в качестве несущей используется гармоническое колебание. Другим важным примером является импульсная модуляция, при которой несущей служит последовательность одинаковых импульсов, один из параметров которых изменяется в соответствии с изменением модулирующего воздействия.

Для дальнейшего изучения свойств процесса дискретизации лучше всего обратиться к методам частотного анализа. В связи с этим напомним, что умножение и свертка функций являются двойственными операциями во временной и частотной областях.

Устройства опто-, акусто-, магнито- и криоэлектроники. Цифровая запись и воспроизведение звука. Прием цифрового радиовещания. Системы радиоуправления объектами. Системы радиопротиводействия. Телевидение повышенного качества и высокой четкости. Спутниковое телевидение. Цифровое телевидение. Принципы лазерной записи и воспроизведения. Системы информационного обслуживания. Бытовые и персональные ЭВМ. Многоракурсное и голографическое телевидение.
купить бензопилу олео мак, бензопилы oleo олео мак купить недорого.
На сайте www.bamperauto.ru передний бампер на ВАЗ 2113 в цвет.
На сайте http://ft-comp.ru полиэстеровые ленты купить.
Купить кофе для ресторана смотри здесь.
Промышленная электроника